Abstract

Spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) appears to play an important role in cardiac sinoatrial node pacemaking. However, comparatively little is known about the role of intracellular Ca(2+) in the atrioventricular node (AVN). Intracellular Ca(2+) was therefore monitored in cells isolated from the rabbit AVN, using fluo-3 in conjunction with confocal microscopy. These cells displayed spontaneous Ca(2+) transients and action potentials. Ca(2+) transients were normally preceded by a small, slow increase (ramp) of intracellular Ca(2+) which was sometimes, but not always, accompanied by Ca(2+) sparks. During the Ca(2+) transient, intracellular [Ca(2+)] increased initially at the cell periphery and propagated inhomogeneously to the cell centre. The rate of spontaneous activity was decreased by ryanodine (1muM) and increased by isoprenaline (500nM); these changes were accompanied by a decrease and increase, respectively, in the slope of the preceding Ca(2+) ramp, with no significant change in Ca(2+) spark characteristics. Rapidly reducing bathing [Na(+)] inhibited spontaneous activity. These findings provide the first information on Ca(2+) handling at the sub-cellular level and link cellular Ca(2+) cycling to the genesis of spontaneous activity in the AVN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.