Abstract

AbstractSignificant enhancement of the light emission in Ruddlesden–Popper organic–inorganic halide perovskites is obtained by antisolvent induced spontaneous formation of nanocrystals in an amorphous matrix. This morphology change results in the passivation of defects and significant enhancement of light emission and 16 times higher photoluminescence quantum yield (PLQY), and it is applicable to different spacer cations. The use of trioctylphosphine oxide results in further defect passivation leading to an increase in PLQY (≈2.3 times), the suppression of lower energy emission in low temperature photoluminescence spectra, the dominance of radiative recombination, and the disappearance of thermal quenching of the luminescence. The proposed method offers a reproducible, controllable, and antisolvent‐insensitive alternative to energy landscape engineering to utilize energy funneling phenomenon to achieve bright emission. Instead of facilitating fast energy transfer from lower to higher number of perovskite sheets to prevent nonradiative losses, it is demonstrated that defects can be effectively passivated via morphology control and the use of a passivating agent, so that bright emission can be obtained from single phase nanocrystals embedded in amorphous matrix, resulting in light emitting diodes with a maximum external quantum efficiency of 2.25%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.