Abstract
Complex, sophisticated surface patterns on micrometer and nanometer scales are obtained when solvent evaporates from solutions containing nonvolatile solutes dropped on a solid substrate. Such evaporation-driven pattern formation has been utilized as a fabrication process of highly ordered patterns in thin films. Here, we suggested the spontaneous pattern formation induced by Bénard-Marangoni convection triggered by solvent evaporation as a novel patterning process of sol-gel-derived organic-inorganic hybrid films. Microcraters of 1.0-1.5 μm in height and of 100-200 μm in width were spontaneously formed on the surface of silica-poly(vinylpyrrolidone) hybrid films prepared via temperature-controlled dip-coating process, where the surface patterns were linearly arranged parallel to the substrate withdrawal direction. Such highly ordered micropatterns were achieved by Bénard-Marangoni convection activated at high temperatures and the unidirectional flow of the coating solution on the substrate during dip-coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.