Abstract
Monolithic ethane−silica gels with well-defined co-continuous macropores and highly ordered mesopores have been synthesized via a spontaneous route from silicon alkoxide with the aid of a structure-directing agent. While the macropores are formed by the concurrent phase separation and sol−gel transition induced by the polymerization reaction, the mesopores are templated by the self-organization of the structure-directing agent. Starting from a homogeneous mixture of the starting components, all the structure formation processes take place spontaneously in closed conditions at a constant temperature. Subsequent evaporation drying and heat treatment result in gels with hierarchical and fully accessible pores in discrete size ranges of micrometer and nanometer. While the local alignment of the mesopores is confirmed by FE-SEM observation, the long-range mesoscale order over the whole sample is evidenced by X-ray diffraction measurements. With the addition of a micelle-swelling agent, the mesostructural trans...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.