Abstract

Hybrid assemblies composed of phospholipids and amphiphilic polymers have been investigated previously as a biomimetic model of biological cells. However, these studies focused on the functions of polymers in a sea of membrane lipids. Here, we prepared a highly stable peptide-lipid hybrid vesicle from a combination of an amphiphilic polypeptide and the phospholipid, 1,2-dimyristoyl- sn-glycero-3-phosphocholine, with a mixing molar ratio of 1:1. The phase-separated structure of the hybrid vesicle was demonstrated by fluorescence resonance energy transfer analysis. The lipid domain of the hybrid vesicle had a phase-transition temperature of 38 °C and allowed the permeation of a hydrophilic molecule, fluorescein isothiocyanate-labeled polyethylene glycol ( Mw: 2000), above 38 °C. The designed peptide-lipid hybrid vesicle and a "lipidic gate" are a promising tool for smart drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.