Abstract

The unusual spontaneous formation of submicrometer-sized vesicles from a small, nonamphiphilic bis-biuret difluorene derivative upon dissolution of the solid in an anhydrous organic solvent was investigated using multiple scattering techniques. Time-resolved light scattering (TLS) measurements confirm that the self-assembly process is driven by hydrogen-bonding interactions, leading to the formation of vesicles at a critical concentration ∼1 × 10–4 M in tetrahydrofuran as determined by absorbance and surface tension measurements. Results from cryogenic-scanning electron microscopy (cryo-SEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) experiments are consistent with the existence of vesicle-like aggregates in solution. DLS studies indicate a broad distribution of aggregates with a mean hydrodynamic radius ⟨RH⟩ = 303 nm (polydispersity =0.49). SAXS profiles show two decay regimes (low-Q decay, very large aggregates; large-Q decay, smaller species). The analysis models the large aggregates as vesicles (hollow spheres) with a mean external radius Ro = 750 nm and an internal radius Ri = 720 nm while the smaller aggregates have a mean radius R = 2.2 nm. The results obtained by cryo-SEM show spherical aggregates of vesicles size in the range ca. 100 nm to 1 μm. Transmission electron microscopy (TEM) micrographs evidence the presence of aggregates whose morphology is compatible with budding and pearling processes as possible mechanisms for the formation of vesicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.