Abstract

We present a neutron-diffraction, small-angle scattering, and magnetometry study of the narrow bandwidth perovskite cobaltite ${\text{Pr}}_{1\ensuremath{-}x}{\text{Ca}}_{x}{\text{CoO}}_{3}$, demonstrating an unusual form of magnetoelectronic phase separation where long-range ordered ferromagnetism coexists spatially with short-range ferromagnetism. The two phases have very different coercivities and, remarkably, are strongly exchange coupled. The electronic phase separation thus leads to spontaneous formation of a hard-soft nanocomposite, exhibiting prototypical exchange-spring behavior in the absence of chemical interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.