Abstract

We analyzed hydrodynamic fluctuations in nematic liquid crystals simulated by Multi-particle Collision Dynamics. Velocity effects on orientation were incorporated by allowing mesoscopic velocity gradients to exert torques on nematic particles. Backflow was included through an explicit application of angular momentum conservation during the collision events. We measured the spectra of hydrodynamic fluctuations and compared them with those derived from a linearized hydrodynamic scheme. Numerical results were found to reproduce the expected coupling between hydrodynamic modes, thus showing that the implementation simulates proper nematodynamic effects at the mesoscopic level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call