Abstract

The temperature-dependent preformed cluster model [PCM[Formula: see text]] is employed to extend our recent work [Niyti, G. Sawhney, M. K. Sharma and R. K. Gupta, Phys. Rev. C 91 (2015) 054606] on [Formula: see text]-decay chains of various isotopes of [Formula: see text]–118 superheavy nuclei (SHN), to spontaneous fissioning nuclei [Formula: see text]Lr, [Formula: see text]Rf, [Formula: see text]Db, [Formula: see text]Rg, and [Formula: see text]Cn occurring as end products of these [Formula: see text]-decay chains. The behavior of fragment mass distribution and competitive emergence of the dominant decay mode, i.e., the [Formula: see text]-emission versus spontaneous fission (SF), are studied for identifying the most probable heavy fission fragments, along with the estimation of SF half-life times T[Formula: see text] and total kinetic energy (TKE) of the above noted isotopes of [Formula: see text]–112 nuclei decaying via the SF process. The mass distributions of chosen nuclei are clearly symmetric, independent of mass and temperature. The most preferred decay fragment is found to lie in the neighborhood of doubly magic shell closures of [Formula: see text] and [Formula: see text], with largest preformation factor [Formula: see text]. In addition, a comparative study of the “hot compact” and “cold elongated” configurations of [Formula: see text]-deformed and [Formula: see text]-oriented nuclei indicates significantly different behaviors of the two mass fragmentation yields, favoring “hot compact” configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call