Abstract

We study the spontaneous excitation of a detector (modeled by a two-level atom) in circular motion coupled nonlinearly to vacuum massless Rarita–Schwinger fields in the ultrarelativistic limit and demonstrate that the spontaneous excitation occurs for ground-state atoms in circular motion in vacuum but the excitation rate is not of a pure thermal form as that of the atoms in linear uniform acceleration. An interesting feature is that terms of odd powers in acceleration appear in the excitation rate whereas in the linear acceleration case there are only terms of even powers present. On the other hand, what makes the present case unique in comparison to the atom’s coupling to other fields that are previously studied is the appearance of the terms proportional to the seventh and ninth powers of acceleration in the mean rate of change of atomic energy which are absent in the scalar, electromagnetic and Dirac field cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.