Abstract
A growing societal awareness is calling upon scientists to reconsider the use of animals in research, which stimulates the development of translational in vitro models. The physiological and architectural interactions between different cell types within an organ present a challenge to these models, particularly for a complex organ such as the brain. Thus far, in vitro brain models mostly consist of a single cell type and demonstrate little predictive value. Here, we present a co-culture of an epileptic human neocortical biopsy on a layer of human induced pluripotent stem cell (hiPSC)-derived cortical neurons. The activity of the cortical neurons was recorded by a 120-electrode multi-electrode array. Recordings were obtained at 0, 3, and 6 days after assembly and compared to those obtained from cortical neurons without a biopsy. On all three recording days, the hybrid model displayed a firing rate, burst behavior, number of isolated spikes, inter-spike interval, and network bursting pattern that aligns with the characteristics of an epileptic network as reported by others. Thus, this novel model may be a non-animal, translational alternative for testing new therapies up to six days after resection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.