Abstract

Atom-field interactions near optical interfaces have a wide range of applications in quantum technology. Motivated by this, this paper revisits the spontaneous emission of atomic dipoles in the presence of a two sided semi-transparent mirror. First we review the main properties of the quantised electromagnetic field near a semitransparent mirror. To do so, we employ a quantum mirror image detector method which maps the experimental setup which we consider here onto analogous free space scenarios. We emphasise that the local density of states of the electromagnetic field depends on the reflection rates of both sides of the mirror surface. Hence it is not surprising that also the spontaneous decay rate of an atomic dipole in front of a semi-transparent mirror depends on both reflectance rates. Although the effect which we describe here only holds for relatively short atom-mirror distances, it can aid the design of novel photonics devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.