Abstract

We show theoretically that photonic crystal membranes cause large variations in the spontaneous emission rate of dipole emitters, not only inside but also in the near field above the membranes. Our three-dimensional finite-difference time-domain calculations reveal an inhibition of more than five times and an enhancement of more than ten times for the spontaneous emission rate of emitters with select dipole orientations and frequencies. Furthermore, we demonstrate theoretically the potential of a nanoscopic emitter attached to the end of a glass fiber tip as a local probe for mapping the large spatial variations of the photonic crystal local radiative density of states. This arrangement is promising for on-command modification of the coupling between an emitter and the photonic crystal in quantum optical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call