Abstract

ABSTRACTSpontaneous emission (SE) is usually studied within the framework of quantum dissipation theory. In this paper we pursue a different view of SE. Namely, we take advantage of Nonhermitian Quantum Mechanics (NHQM) and interpret SE as the decay of a Feshbach type resonance. Correspondingly, we aim at calculating the SE decay rate Γ (resonance width) and the associated resonance wavefunction via the complex scaling (CS) method. Standard application of CS in NHQM is based on scaling the dissociative coordinates of the system, . In the case of SE, the decay consists in emitting photons. Therefore the CS must be applied on (suitably defined) position coordinates of the photons. Feasibility of such a programme is demonstrated explicitly through choosing the adequate photon coordinates and performing CS of the photon wavefunctions in the position representation. It is anticipated in this way that CS makes the full resonance wavefunction square integrable, and enables thus the calculation of Γ by proceeding in complete analogy with the well established NHQM approaches. As an illustration, the standard Golden Rule formula for Γ is rederived from the CS nonhermitian perturbation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.