Abstract
The spontaneous emission of a two-level atom, located in an isotropic photonic crystal with dynamically modulated photonic band edge, has been studied. When the photonic band edge is modulated with step functions or triangle functions, the evolution of atomic population on the upper level has been discussed. When the photonic band edge is modulated with step functions, the dynamics of atomic population depends not only on the detuning value of the atomic transition frequency from the band edge, but also on the time point of stepping. With the different time point of stepping, the dynamics of atomic population after stepping is different. When the photonic band edge is modulated with triangle functions, the atomic population oscillates quasi-periodically while decaying in general. The oscillation frequency, peak and valley values, and the decaying rate of oscillation can be modulated by choosing the frequency and initial phase of triangle functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.