Abstract

Surface plasmon polaritons (SPPs) are electromagnetic waves at optical frequencies that propagate at the surface of a conductor [1]. SPPs can trap optical photons far below their diffraction limit. The field confinement of SPP provides the environment for controlling the interaction between light and matter. In this chapter, we discuss the quantum electrodynamics (QED) of SPP coupling of excitons near a metal-layer surface, and an exciton embedded in a metal microcavity. We analyze the enhanced spontaneous emission (SE) rate of the exciton coupled to a large number of SPP modes near a uniform or periodically patterned metal layer traveling with extremely slow group velocities. Combining the effects of quality factor (Q) and ohmic losses for each SPP mode, we explain how various loss mechanisms affect the SE rate of excitons in such structures. Similarly, we consider the Q-factor and mode volume of a cavity mode formed by a defect in a grating structure and again investigate the enhancement of SE for excitons lying in a metal cavity. Because defect cavity designs confine modes in all three dimensions, we observe that such a structure of extremely small mode volume could reach various regimes of cavity quantum electro-dynamics (cavity QED). Controlling the SE properties of emitters through the exciton–SPP coupling is great promise for new types of opto-electronic devices overcoming the diffraction limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.