Abstract

Music exists in almost every society, has universal acoustic features, and is processed by distinct neural circuits in humans even with no experience of musical training. However, it remains unclear how these innate characteristics emerge and what functions they serve. Here, using an artificial deep neural network that models the auditory information processing of the brain, we show that units tuned to music can spontaneously emerge by learning natural sound detection, even without learning music. The music-selective units encoded the temporal structure of music in multiple timescales, following the population-level response characteristics observed in the brain. We found that the process of generalization is critical for the emergence of music-selectivity and that music-selectivity can work as a functional basis for the generalization of natural sound, thereby elucidating its origin. These findings suggest that evolutionary adaptation to process natural sounds can provide an initial blueprint for our sense of music.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.