Abstract

Using an extended Nambu-Jona-Lasinio model as a low-energy effective model of QCD, we show that the vacuum in a strong external magnetic field (stronger than 10(16) T) experiences a spontaneous phase transition to an electromagnetically superconducting state. The unexpected superconductivity of, basically, empty space is induced by emergence of quark-antiquark vector condensates with quantum numbers of electrically charged rho mesons. The superconducting phase possesses an anisotropic inhomogeneous structure similar to a periodic Abrikosov lattice in a type-II superconductor. The superconducting vacuum is made of a new type of vortices which are topological defects in the charged vector condensates. The superconductivity is realized along the axis of the magnetic field only. We argue that this effect is absent in pure QED.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call