Abstract
Motivated by the problem of domain formation in chromosomes, we studied a co-polymer model where only a subset of the monomers feel attractive interactions. These monomers are displaced randomly from a regularly-spaced pattern, thus introducing some quenched disorder in the system. Previous work has shown that in the case of regularly-spaced interacting monomers this chain can fold into structures characterized by multiple distinct domains of consecutive segments. In each domain, attractive interactions are balanced by the entropy cost of forming loops. We show by advanced replica-exchange simulations that adding disorder in the position of the interacting monomers further stabilizes these domains. The model suggests that the partitioning of the chain into well-defined domains of consecutive monomers is a spontaneous property of heteropolymers. In the case of chromosomes, evolution could have acted on the spacing of interacting monomers to modulate in a simple way the underlying domains for functional reasons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.