Abstract

To study the developmental profile of otolith-related vestibular nuclear neurons, their spontaneous activities and response dynamics were examined in decerebrate rats aged seven, 14, 21 and 84 (adult) days. Extracellular recordings were performed in the lateral and descending vestibular nucleus of animals held at the stationary position in the earth-horizontal or subjected to constant velocity off-vertical axis rotation, which selectively stimulates the otolith receptors. All neurons displayed sinusoidal position-dependent modulation in discharge rate, indicating their capability in coding spatial information during low-frequency head movement. Some neurons showed a full-cycle response to off-vertical axis rotation (non-clipped), while other neurons were silenced in discharge during parts of each rotary cycle (clipped). In seven-day-old rats, three-quarters of the responsive neurons sampled were clipped and the proportion progressively decreased to less than one-quarter in adult rats. In each age group, the clipped neurons discharged in approximately 60% of the stimulus cycle. Response gains of the neurons increased with age, reaching a plateau from 21 days of age for clipped neurons and 14 days for non-clipped neurons. The clipped neurons demonstrated higher response gains than the non-clipped neurons at or beyond 21 days of age. Spontaneous activities of the neurons at the stationary and earth-horizontal positions were analysed in relation to their response gains; a positive correlation was observed from 14 days of age onwards. Both types of neurons showed progressive increase in spontaneous activity as the rats matured, though the clipped neurons exhibited significantly lower resting rates than the non-clipped neurons at each of the age groups studied. Some neurons that responded to off-vertical axis rotation were not spontaneously active at the stationary position, but the proportion of these decreased significantly with age. The coefficient of variation of each age group showed a bimodal distribution, thereby allowing spontaneously active neurons to be assigned as regular or irregular. Though the vast majority of both the clipped and non-clipped neurons showed irregular discharge patterns at seven days of age, the overall population became more regular as the rats matured. Irregular neurons of young rats exhibited phase-stable and phase-shift responses, while those of older rats showed only the phase-stable response. This distinction was not observed amongst regular neurons over the ages studied. Our results reveal features of central otolith neurons that can be taken as signs of maturation during the first three postnatal weeks. These neuronal features provide the framework for the analysis of behaviours mediated by the otolith system during postnatal maturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call