Abstract

A meter-wide rhyolitic dike near the eastern margin of the Skaergaard Intrusion developed fine concentric layering in a small section where a fault appears to have fractured the dike and enhanced its interaction with meteoric water. Layers two or three millimeters thick consist of quartz alternating with low-temperature albite and potassium feldspar around a core of radiating clots of the same minerals. The layering seems to have resulted from late-stage crystallization and “self-organization” during devitrification in a warm hydrous environment. The development of fine-scale layering can be modeled quantitatively using the model for competitive particle growth (CPG) of Ortoleva and co-workers. Owing to the small differences of surface energy of grains of differing sizes, large crystals tend to grow at the expense of smaller ones, and a repetitive pattern of layering develops from a small initial perturbation of grain size. The spacing of layers predicted by a numerical model using reasonable estimates for the physical parameters, such as diffusivity and the rate of cooling, is in good agreement with the observed geometry and dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call