Abstract
In quantum field theory it is believed that the spontaneous decay of excited atomic or molecular level is due to the interaction with continuum of field modes. Besides, the atom makes a transition from upper level to lower one so that the probability to find the atom in the excited state tends to zero. In this paper it will be shown that the mathematical model in single-photon approximation may predict another behavior of this probability generally. Namely, the probability to find the atom in the excited state may tend to a nonzero constant so that the atom is not in the pure state finally. This effect is due to that the spectrum of the complete Hamiltonian is not purely absolutely continuous and has a discrete level outside the continuous part. Namely, we state that in the corresponding invariant subspace, determining the time evolution, the spectrum of the complete Hamiltonian when the field is considered in three dimensions may be not purely absolutely continuous and may have an eigenvalue. The appearance of eigenvalue has a threshold character. If the field is considered in two dimensions the spectrum always has an eigenvalue and the decay is absent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.