Abstract

Hemisection of the cervical spinal cord causes paralysis of the ipsilateral hemidiaphragm in adult rats. Activation of a latent crossed phrenic motor pathway can restore diaphragmatic function, although structural changes take place before the pathway can be activated. Since mechanisms are employed to eliminate non-functional projections during development, we predicted that this latent neural pathway might be active during development. Therefore, we examined the effect of spinal hemisection (C2) on respiratory-like activity bilaterally using the brainstem–spinal cord preparation from neonatal rats (0–4 days). Spontaneous crossed phrenic activity (respiratory-like activity recorded from the ipsilateral C4 or C5 ventral roots following C2 hemisection) was observed in an age-dependent manner; younger preparations exhibited more than older preparations. Increasing drive (increasing [K +] or superfusion of theophylline) either increased or induced crossed phrenic activity. Hemisection caused no change in the frequency, the burst area, duration or peak amplitude contralateral to hemisection. Unlike adult rats, this study shows that crossed phrenic activity is present in the in vitro respiratory network of neonatal rats suggesting that a crossed neural pathway may be functionally active in neonates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call