Abstract

When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as Kibble-Zurek mechanism. Originally introduced in cosmology, it applies both to classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates via the Kibble-Zurek mechanism. We measure the power-law dependence of defects number with the quench time, and provide a check of the Kibble-Zurek scaling with the sonic horizon. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.