Abstract
It remains a grand challenge to prepare anisotropic crystal superstructures with sensitive optical properties in polymer science and materials field. This study demonstrates that semicrystalline polymers develop into anisotropic hollow spherulitic crystals spontaneously at interfaces of liquid drops. In contrast to conventional spherulites with centrosymmetric optics and grain boundaries, these anisotropic spherulitic crystals have vanished boundary defects, tunable aspect ratios, and noncentrosymmetric, orientation-sensitive birefringence. The experimental finding is elaborated in poly(l-lactic acid) crystals and is further verified in a broad class of semicrystalline polymers, irrespective of molecular chirality, chemical constitution, or interfacial modification. The facile methods and general mechanism revealed in this study shed light on developing new types of optical microdevices and synthesis of anisotropic semicrystalline particles from liquid emulsions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.