Abstract
The present paper is part two of a small series of three publications on spontaneous breakages of toughened glass. In part one, we deal with the detailed effects of the crystallographic and physical properties of the nickel sulphide species contained in those inclusions; we find that solely under this aspect, only c. 40% of the breakages in a Heat Soak Test (HST) according to, e.g., EN 14179-1:2006, would be physically able to cause a breakage in a façade. The present paper partly builds up on these findings. In the present paper, we prove experimentally that nickel sulphide inclusions are found everywhere in the raw glass section. On the other hand, their repartition is visibly influenced by gravitational settling. The resulting distribution profile is explained by a physical model. Further elaboration of this model allows to better understand the observed nickel sulphide inclusion size distribution in the raw glass. We show statistically that almost only nickel sulphide inclusions with size >55~upmu hbox {m}, situated in the middle glass portion, can lead to breakage in HST, in good correlation with data previously published. We quantify the nickel sulphide inclusions’ size impact based on the statistical evaluation of our dataset. Big nickel sulphide inclusions (>450~upmu hbox {m}) always cause very high breakage risk > 90%. On the other hand, we prove experimentally that only a minority of c. 1/4 of the nickel sulphide inclusions factually existing in raw glass leads to breakages in the HST carried out in the frame of our R&D project where the glass panes were only small and thin. In the normal building glass product mix this proportion is probably higher because in the HST, the mass-related breakage rate (in numbers per ton of glass) increases with increasing glass panes’ dimensions. In Part Three we evaluate datasets from field breakages and give an overall summary of the series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.