Abstract
Many active fluid systems encountered in biology are set in total geometric confinement. Cytoplasmic streaming in plant cells is a prominent and ubiquitous example, in which cargo-carrying molecular motors move along polymer filaments and generate coherent cell-scale flow. When filaments are not fixed to the cell periphery, a situation found both invivo and invitro, we observe that the basic dynamics of streaming are closely related to those of a nonmotile stresslet suspension. Under this model, it is demonstrated that confinement makes possible a stable circulating state; a linear stability analysis reveals an activity threshold for spontaneous autocirculation. Numerical analysis of the longtime behavior reveals a phenomenon akin to defect separation in nematic liquid crystals and a high-activity bifurcation to an oscillatory regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.