Abstract

Changes in ploidy are relatively rare, but play important roles in the development of cancer and the acquisition of long-term adaptations. Genome duplications occur across the tree of life, and can alter the rate of adaptive evolution. Moreover, by allowing the subsequent loss of individual chromosomes and theaccumulation of mutations, changes in ploidy can promote genomic instability and/or adaptation. Although many studies have been published in the last years about changes in chromosome number and their evolutionary consequences, tracking and measuring the rate of whole-genome duplications have been extremely challenging. We have systematically studied the appearance of diploid cells among haploid yeast cultures evolving for over 100 generations in different media. We find that spontaneous diploidization is a relatively common event, which isusually selected against, but under certain stressful conditions may become advantageous. Furthermore, we were able to detect and distinguish between two different mechanisms of diploidization, one that requires whole-genome duplication (endoreduplication) and a second that involves mating-type switching despite the use of heterothallic strains. Our results have important implications for our understanding of evolution and adaptation in fungal pathogens and the development of cancer, and for the use of yeast cells in biotechnological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call