Abstract

Growth cones of cortical axons pause for many hours in preparation for axon branching. They become large and complex compared with small advancing growth cones. We wanted to investigate whether calcium transients regulate the advance of mammalian CNS growth cones. We found that spontaneous calcium transients in developing cortical neurons have characteristic patterns, frequencies, and amplitudes. Importantly, neurons with large paused growth cones exhibit high-frequency spontaneous calcium transients, which are rare in those with small advancing growth cones. The incidence, frequencies, and amplitudes of calcium transients are inversely related to rates of axon outgrowth. The transients are mediated primarily by L-type voltage-gated calcium channels, and silencing them with channel blockers promotes axon outgrowth. Thus calcium transients regulate growth cone advance by direct effects on the growth cone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.