Abstract

BALB/c IL-2-deficient (IL-2-KO) mice develop systemic autoimmunity, dying within 3 to 5 wk from complications of autoimmune hemolytic anemia. Disease in these mice is Th1 mediated, and IFN-γ production is required for early autoimmunity. In this study, we show that dendritic cells (DCs) are required for optimal IFN-γ production by T cells in the IL-2-KO mouse. Disease is marked by DC accumulation, activation, and elevated production of Th1-inducing cytokines. IL-2-KO DCs induce heightened proliferation and cytokine production by naive T cells compared with wild-type DCs. The depletion of either conventional or plasmacytoid DCs significantly prolongs the survival of IL-2-KO mice, demonstrating that DCs contribute to the progression of autoimmunity. Elimination of Th1-inducing cytokine signals (type 1 IFN and IL-12) reduces RBC-specific Ab production and augments survival, indicating that cytokines derived from both plasmacytoid DCs and conventional DCs contribute to disease severity. DC activation likely precedes T cell activation because DCs are functionally activated even in an environment lacking overt T cell activation. These data indicate that both conventional and plasmacytoid DCs are critical regulators in the development of this systemic Ab-mediated autoimmune disease, in large part through the production of IL-12 and type 1 IFNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.