Abstract
Medullary thyroid carcinoma (MTC) in MEN2B syndrome is associated with germline RET mutation. Patients harboring de novo mutations are usually diagnosed at more advanced disease stages. We present a young woman with Met918Th mutation diagnosed with stage IV MTC at age 10 years. The disease progressed despite total thyroidectomy and multiple surgical interventions for cervical lymph node recurrences, leading to distant metastases in the fifth year after the initial diagnosis. Subsequently, she underwent five different types of tyrosine kinase inhibitor (TKI) treatments. The 17-year disease course was divided into periods defined by four surgical interventions and sequential treatment intervals with four multikinase (sunitinib, vandetanib, cabozantinib, and lenvatinib) and one RET-selective TKI (selpercatinib). Tumor growth for different phases of spontaneous development and drug treatment intervals was characterized by changes in serial log-transformed calcitonin measurements (n = 114). Three operations (one for calcitonin-producing adrenal pheochromocytoma) were associated with drops in calcitonin levels. All of the nonselective TKIs were stopped due to adverse effects. As reflected by the negative calcitonin doubling rate, the best treatment response was observed with selpercatinib, which was associated with an initial large drop followed by a decreasing calcitonin trajectory over 514 days without any major side effects. This case of MEN2B medullary thyroid cancer with long-term survival presents how the effectiveness of different treatment modalities can be estimated using log-transformed calcitonin levels. Furthermore, our experience supports the view that serial calcitonin measurements may be more sensitive than radiological follow-up in advanced MTC. Our patient also represents a new case of rarely reported calcitonin-producing pheochromocytomas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.