Abstract
ABSTRACTWe have investigated the mid-infrared spontaneous and stimulated emission between confined subbands in the conduction band of GaAs/AlGaAs quantum wells. The carriers which give rise to the intersubband emission are excited in the upper subbands using an intersubband optical pumping in coupled asymmetric quantum wells. The quantum wells are designed using phonon engineering in order to obtain population inversion between the second and first excited subband. This is obtained by adjusting the subband energy spacing between E2 and E1 close to the optical phonon energy which in turn allows an efficient relaxation. We have first observed intersubband spontaneous emission between E3 and E2 at 14 μm using an intersubband pumping with a CO2 laser in resonance with the E1-E3 transition. In a second set of experiments, the quantum wells are embedded in an infrared waveguide. We have measured the stimulated intersubband gain using a picosecond two-color free electron laser. The first color bleaches the E1-E3 transition and provides the population inversion. The intersubband stimulated gain is measured versus the waveguide length and photon energy. Stimulated gains ≈ 80 cm−1 are reported thus demonstrating that laser emission under optical pumping appears feasible in optimized structures. Finally, we show that intersubband emission can also be observed in quantum wells using an interband optical pumping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.