Abstract
Perceptual decisions depend both on the features of the incoming stimulus and on the ongoing brain activity at the moment the stimulus is received. Specifically, trial-to-trial fluctuations in cortical excitability have been linked to fluctuations in the amplitude of prestimulus α oscillations (∼8-13 Hz), which are in turn are associated with fluctuations in subjects' tendency to report the detection of a stimulus. It is currently unknown whether α oscillations bias postperceptual decision-making, or even bias subjective perception itself. To answer this question, we used a contrast discrimination task in which both male and female human subjects reported which of two gratings (one in each hemifield) was perceived as having a stronger contrast. Our EEG analysis showed that subjective contrast was reduced for the stimulus in the hemifield represented in the hemisphere with relatively stronger prestimulus α amplitude, reflecting reduced cortical excitability. Furthermore, the strength of this spontaneous hemispheric lateralization was strongly correlated with the magnitude of individual subjects' biases, suggesting that the spontaneous patterns of α lateralization play a role in explaining the intersubject variability in contrast perception. These results indicate that spontaneous fluctuations in cortical excitability, indicated by patterns of prestimulus α amplitude, affect perceptual decisions by altering the phenomenological perception of the visual world.SIGNIFICANCE STATEMENT Our moment-to-moment perception of the world is shaped by the features of the environment surrounding us, as much as by the constantly evolving states that characterize our brain activity. Previous research showed how the ongoing electrical activity of the brain can influence whether a stimulus has accessed conscious perception. However, evidence is currently missing on whether these electrical brain states can be associated to the subjective experience of a sensory input. Here we show that local changes in patterns of electrical brain activity preceding visual stimulation can bias our phenomenological perception. Importantly, we show that the strength of these variations can help explain the great interindividual variability in how we perceive the visual environment surrounding us.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.