Abstract

By recording miniature end-plate potentials (mEPP), the effects of dantrolene (10-100 μM), a blocker of ryanodine receptors, were studied on the isolated diaphragm of mice. The effects to be studied were as follows: on spontaneous secretion of acetylcholine quanta and on the pattern of interaction with ryanodine effects. Two-hour-long application of dantrolene to the muscle caused no significant changes in the amplitude and dispersion (σ2) of mEPP, nor on its time course. In the presence of 100 μM dantrolene, the mean frequency of mEPP increased, on average, by 58.3 ± 5.9% (P < 0.05). Dantrolene suppressed in a dose-dependent manner a number of ryanodine effects (this agent was used in a concentration of 0.5 μM as an intensifier of intracellular Ca2+ mobilization): it completely prevented the appearance of the population of high-amplitude (the so-called giant) mEPP, reduced by 50-80% the increment of the mEPP amplitude dispersion, and increased by 25-45% the mEPP mean amplitude; the above effects were induced by ryanodine application for 120 min. After preliminary application of dantrolene (10-100 μM), ryanodine caused an effect not observable in the absence of dantrolene: mEPP became more frequent (140-210%). Thus, when acting on motor synapses, dantrolene behaves as a nontoxic agent, inducing only a presynaptic effect – a moderate increase in the mEPP frequency. The dual character of interaction between dantrolene and ryanodine in motor synapses was observed: on the one hand, dantrolene acts as a physiological antagonist of ryanodine by reducing the ryanodine-induced increase of dispersion and mEPP amplitude; on the other hand, dantrolene unmasks the ability of ryanodine to increase the mEPP frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call