Abstract
In a classical view, abrupt dopant profiles in semiconductors tend to be smoothed out by diffusion due to concentration gradients and repulsive screened Coulomb interactions between the charged dopants. We demonstrate, however, using cross-sectional scanning tunneling microscopy and secondary ion mass spectroscopy, that charged Be dopant atoms in GaAs p-n superlattices spontaneously accumulate and form two-dimensional dopant layers. These are stabilized by reduced repulsive screened Coulomb interactions between the charged dopants arising from the two-dimensional quantum mechanical confinement of charge carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.