Abstract

Developing a packaging material with integrated cushioning, intelligent and active functions is highly desired but remains challenging in the food industry. Here we show that a sponge-like porous hydrogel with pH-indicating and antibacterial additives can meet this requirement. We use polyvinyl alcohol and chitosan as the primary polymers to construct a hydrogel with hierarchical structures through a freeze-casting method in combination with salting-out treatment. The synergy of aggregated polymer chains and the sponge-like porous structure makes the hydrogel resilient and efficient in energy absorption. It also enables rapid movement of molecules/particles and fast reaction due to the large specific surface area of the pore structures and the large amount of free water in it, leading to a sensitive pH-indicating function. The hydrogel shows an obvious color variation within a wide pH range in 3 min. The silver nanoparticles are fixed in the dense polymer networks, enabling a lasting release of silver ions. The porous structure makes the silver ion reach the protected item in a short time, achieving an antibacterial effect against S. aureus and E. coli with little cytotoxicity. This work paves the way for fabricating multifunctional hydrogels for diverse advanced packaging systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.