Abstract
Macroporous gels find application in several scientific fields, ranging from art restoration to wastewater filtration or cell entrapment. In this work, two-component sponge-like cryogels are challenged to assess their cleaning performances and to investigate how pores size and connectivity affect physico-chemical properties. The gels were obtained through a freeze-thaw process, exploiting a spontaneous polymer-polymer phase-separation occurring in the pre-gel solution. During the freezing step, a highly hydrolyzed polyvinyl alcohol (H-PVA) forms the hydrogel walls. The secondary components, namely a partially hydrolyzed polyvinyl alcohol (L-PVA) or polyvinyl pyrrolidone (PVP), act as modular porogens, being partially extracted during gel washing. H-PVA/L-PVA and H-PVA/PVP mixtures were studied by confocal laser scanning microscopy to unveil sols and gels morphology at the micron-scale, while small angle X-ray scattering was used to get insights about characteristic dimensions at the nanoscale. The gelation mechanism was investigated through rheology measurements, and the characteristic exponents were compared to De Gennes' scaling laws gathered from percolation. In the field of art conservation, these sponge-like gels are ideal systems for the cleaning of artistic painted surfaces. Their interconnected pores allow the diffusion of cleaning fluids at the painted interface, facilitating dirt uptake and/or detachment. This study uncovered a direct relationship linking a gel's cleaning performance to its apparent tortuosity. These findings can pave the way to fine-tuning systems with enhanced cleaning abilities, not restricted to the restoration of irreplaceable priceless works of art, but with possible application in diverse research fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.