Abstract

Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM) from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water), in samples exiting the sponge (exhalent seawater), and in samples collected just outside the reef area (off reef seawater). Samples were collected from two sponge species, Ircinia campana and Spheciospongia vesparium, on a near-shore hard bottom reef in the Florida Keys. Metabolic profiles generated from untargeted metabolomics analysis indicated that many more compounds were enhanced in the exhalent samples than in the inhalant samples. Targeted metabolomics analysis revealed differences in diversity and concentration of metabolites between exhalent and off reef seawater. For example, most of the nucleosides were enriched in the exhalent seawater, while the aromatic amino acids, caffeine and the nucleoside xanthosine were elevated in the off reef water samples. Although the metabolic profile of the exhalent seawater was unique, the impact of sponge metabolism on the overall reef DOM profile was spatially limited in our study. There were also no significant differences in the metabolic profiles of exhalent water between the two sponge species, potentially indicating that there is a characteristic DOM profile in the exhalent seawater of Caribbean sponges. Additional work is needed to determine whether the impact of sponge DOM is greater in habitats with higher sponge cover and diversity. This work provides the first insight into the molecular-level impact of sponge holobiont metabolism on reef DOM and establishes a foundation for future experimental studies addressing the influence of sponge-derived DOM on chemical and ecological processes in coral reef ecosystems.

Highlights

  • Coral reefs exist in relatively oligotrophic environments where there is tight coupling between benthic and pelagic nutrient cycles (Wild et al, 2008; Naumann et al, 2012)

  • By applying metabolomics analysis to inhalant and exhalent water of these two sponge species and to water collected away from the reef, we demonstrate a complex dynamic of removal and addition of labile dissolved organic matter (DOM) to the surrounding seawater that would be difficult to predict based solely on bulk carbon analyses

  • The present study supports three main conclusions regarding the alteration of DOM by the sponge holobiont: (1) the profile of DOM in the exhalent water is unique from the surrounding seawater and seawater further away from the reef; (2) the influence of spongederived DOM on the DOM profile of surrounding seawater is localized close to the exhalent plume; and (3) the DOM profiles of two sponge species with distinct microbial communities are highly similar

Read more

Summary

Introduction

Coral reefs exist in relatively oligotrophic environments where there is tight coupling between benthic and pelagic nutrient cycles (Wild et al, 2008; Naumann et al, 2012). Recent studies have begun to examine the sources and major components of DOM on coral reefs. Studies comparing DOC from different sources and their effects on ecosystem function have begun to elucidate ecologically important connections between DOC, microbial community composition, and coral reef biogeochemical cycling (e.g., Wild et al, 2008; Haas et al, 2013)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call