Abstract

Spoken language change detection (LCD) refers to identifying the language transitions in a code-switched utterance. Similarly, identifying the speaker transitions in a multispeaker utterance is known as speaker change detection (SCD). Since tasks-wise both are similar, the architecture/framework developed for the SCD task may be suitable for the LCD task. Hence, the aim of the present work is to develop LCD systems inspired by SCD. Initially, both LCD and SCD are performed by humans. The study suggests humans require (a) a larger duration around the change point and (b) language-specific prior exposure, for performing LCD as compared to SCD. The larger duration requirement is incorporated by increasing the analysis window length of the unsupervised distance-based approach. This leads to a relative performance improvement of 29.1%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$29.1\\%$$\\end{document} and 2.4%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2.4\\%$$\\end{document}, and a priori language knowledge provides a relative improvement of 31.63%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$31.63\\%$$\\end{document} and 4.01%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$4.01\\%$$\\end{document} on the synthetic and practical codeswitched datasets, respectively. The performance difference between the practical and synthetic datasets is mostly due to differences in the distribution of the monolingual segment duration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.