Abstract
This paper proposes a texture feature which is applied on human breast Optical Coherence Microscopy (OCM) images to classify different types of breast tissues. Inspired by local binary pattern (LBP) texture features, a new variant of LBP feature, block based LBP (BLBP) is proposed. Instead of representing intensity differences between neighbors and a center pixel, BLBP feature extracts the intensity differences among certain blocks of the neighborhood around a pixel. Two different ways are proposed to organize the blocks: the spokes and the rings. By integrating spoke BLBP with ring BLBP features, very high classification accuracy is achieved using a neural network classifier. In one of our experiments which classifies 4310 OCM images into five tissue types, the classification accuracy increased from 81.7% to 92.4% when new features are used instead of the traditional LBP feature. In another experiment which classifies 46 large field OCM images as either benign or containing tumor, a classification accuracy of 91.3% is reached by using multi-scale BLBP features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.