Abstract

This study investigated the spoilage potential of yeast strains Kluyveromyces marxianus (Km1, Km2 and Km3), Pichia kudriavzevii Pk1 and Torulaspora delbrueckii Td1 grown in skyr in cold storage. Yeast strains were isolated from skyr and identified by sequencing of the 26S rRNA gene. K. marxianus yeasts were grown in skyr to high numbers, generating large amounts of volatile organic compounds (VOC) associated with off-flavours, among them were alcohols (3-methyl-1-butanol, 2-methyl-1-propanol and 1-hexanol), esters (ethyl acetate and 3-methylbutyl acetate) and aldehydes (hexanal, methylbutanal and methylpropanal). Growth of P. kudriavzevii Pk1 led to moderate increases in several alcohols and esters (mostly, 3-methyl-1-butanol and ethyl acetate), whereas only minor shifts in VOCs were associated with T. delbrueckii Td2. The levels of the key aroma compounds, diacetyl and acetoin, were significantly decreased by all K. marxianus strains and P. kudriavzevii Pk1. In contrast to the other yeast species, K. marxianus was able to utilize lactose, producing ethanol and carbon dioxide. Based on the overall results, K. marxianus was characterised by the highest spoilage potential. The study revealed the differences between the yeast species in fermentative and spoilage activities, and clarified the role of yeast metabolites for off-flavour formation and quality defects in skyr during cold storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call