Abstract
Surface mining for coal (or other mineral resources) is a major driver of land-use change around the world and especially in the Appalachian region of the United States. Intentional and well-informed reclamation of surface-mined land is critical for the restoration of healthy ecosystems on these disturbed sites. In Appalachia, the pre-mining land cover is predominately mixed hardwood forest, with rich species diversity. In recent years, Appalachian mine reforestation has become an issue of concern, prompting the development of the Forestry Reclamation Approach, a series of mine reforestation recommendations. One of these recommendations is to use the best available soil substitute; however, the characteristics of the “best” soil substitute have been an issue. This study was initiated to compare the suitability of several types of mine spoil common in the Appalachian region: brown sandstone (Brown), gray sandstone (Gray), mixed spoils (Mixed), and shale (Shale). Experimental plots were established in 2007 with each spoil type replicated three times. These plots were planted with a mix of native hardwood species. Ten years after plot construction and planting, tree growth and canopy cover were highest in Brown, followed by Shale, Mixed, and Gray. Soil conditions (particularly pH) in Brown and Shale were more favorable for native tree growth than Mixed or Gray, largely explaining these differences in tree growth and canopy cover. However, soil chemistry did not clearly explain differences in tree growth between Brown and Shale. These differences were more likely related to differences in near-surface soil temperature, which is related to soil color and available shade.
Highlights
Surface mining for coal and other resources is a major driver of land-use change around the world.In general, surface mining involves clearing existing landcover, removing overburden, extracting the target resource, replacing the overburden, and reclaiming the site to a designated post-mining land use.Reclamation represents a critical phase of this process—good reclamation can set a highly disturbed site on a trajectory toward near-native conditions, while poor reclamation can lock a site into an ecologically devastated state over long time periods
While pH was slightly acidic in brown sandstone (Brown) and Shale, soils from gray sandstone (Gray) and mixed spoils (Mixed) were slightly alkaline (Table 1)
P was higher in Brown and Shale than Gray and Mixed, which is consistent with observed differences in pH
Summary
Surface mining for coal and other resources is a major driver of land-use change around the world.In general, surface mining involves clearing existing landcover (forests, grasslands, etc.), removing overburden (layers of rock that lay over the target resource), extracting the target resource, replacing the overburden (often called spoil), and reclaiming the site to a designated post-mining land use.Reclamation represents a critical phase of this process—good reclamation can set a highly disturbed site on a trajectory toward near-native conditions, while poor reclamation can lock a site into an ecologically devastated state over long time periods. Surface mining for coal and other resources is a major driver of land-use change around the world. Surface mining involves clearing existing landcover (forests, grasslands, etc.), removing overburden (layers of rock that lay over the target resource), extracting the target resource, replacing the overburden (often called spoil), and reclaiming the site to a designated post-mining land use. An especially important aspect of reclamation is soil selection. Native topsoil is not available for use during reclamation, and crushed. Forests 2018, 9, 780 overburden may be used as a substitute. When this is the case, the type of spoil selected may influence the long-term ecological development of the site, for better or for worse
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.