Abstract

The nature of the bonding between a neutral group 12 member (Zn3, Cd3 and Hg3) ring and a noble gas atom was explored using quantum chemical simulations. Natural bond orbital, quantum theory of atoms in molecules, symmetry-adapted perturbation theory, and molecular electrostatic potential surface analysis were also used to investigate the type of interaction between the noble gas atom and the metal rings (Zn3, Cd3 and Hg3). The Zn3, Cd3 and Hg3 rings are bonded to the noble gas through non-covalent interactions, which was revealed by the non-covalent interaction index. Additionally, energy decomposition analysis reveals that dispersion energy is the key factor in stabilizing these systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call