Abstract

AbstractSparc/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) is a matricellular protein which regulates cell proliferation, invasion, and survival but the function of SPOCK1 in liver fibrosis is obscure. In this study, we found that SPOCK1 expression increased significantly in fibrotic liver tissues and activated primary rat hepatic stellate cells (R-HSCs). SPOCK1 co-localized with α-smooth muscle actin (α-SMA) in the cytoplasm. Mechanistically, we found platelet-derived growth factor-BB (PDGF-BB) induced SPOCK1 expression by activating the PI3K/Akt/forkhead box M1 (FoxM1) signaling pathway. Intracellular SPOCK1 downregulation decreased the HSC activation, proliferation, and migration induced by PDGF-BB. Furthermore, intracellular SPOCK1 overexpression or recombinant SPOCK1 treatment promoted HSC activation, proliferation, and migration by activating the PI3K/Akt signaling pathway. Co-immunoprecipitation, double immunofluorescence staining indicated that SPOCK1 interacted with integrin α5β1, and neutralization of integrin α5β1 significantly reduced the role of recombinant SPOCK1 in HSCs. In vivo HSC-specific SPOCK1 knockdown following lentivirus administration dramatically ameliorated thioacetamide (TAA)-induced collagen deposition in rat livers. Collectively, our study indicates that SPOCK1 is crucial for hepatic fibrosis and it might be a promising therapeutic target.Matricellular protein SPOCK1 expression positively correlates with liver fibrosis and hepatic stellate cell activation. SPOCK1 is upregulated by PDGF-BB via the PI3K/Akt/FoxM1 signaling pathway and induces pro-fibrogenic responses. Additionally, it promotes stellate cell pro-fibrogenic responses through the integrin α5β1/PI3K/Akt signaling pathway. SPOCK1 is therefore a promising therapeutic target for liver fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.