Abstract

Little is known about immediate phases after viral infection and how an incoming viral genome complex counteracts host cell defenses, before the start of viral gene expression. Adenovirus (Ad) serves as an ideal model, since entry and onset of gene expression are rapid and highly efficient, and mechanisms used 24–48 hours post infection to counteract host antiviral and DNA repair factors (e.g. p53, Mre11, Daxx) are well studied. Here, we identify an even earlier host cell target for Ad, the chromatin-associated factor and epigenetic reader, SPOC1, recently found recruited to double strand breaks, and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its functional association with the Ad major core protein pVII that enters with the viral genome, followed by E1B-55K/E4orf6-dependent proteasomal degradation of SPOC1. Mimicking removal of SPOC1 in the cell, knock down of this cellular restriction factor using RNAi techniques resulted in significantly increased Ad replication, including enhanced viral gene expression. However, depletion of SPOC1 also reduced the efficiency of E1B-55K transcriptional repression of cellular promoters, with possible implications for viral transformation. Intriguingly, not exclusive to Ad infection, other human pathogenic viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host cells should provide new perspectives for developing antiviral agents and therapies. Conversely, for Ad vectors used in gene therapy, counteracting mechanisms eradicating incoming viral DNA would increase Ad vector efficacy and safety for the patient.

Highlights

  • DNA viruses require nuclear transport of their genomes to productively infect the host cell and initiate efficient replication

  • We reported that chromatin formation and cellular SWI/SNF chromatin remodeling processes play a key role in Ad transcriptional regulation

  • We observe for the first time that SPOC1, identified as a regulator of DNA damage response and chromatin structure, plays an essential role in restricting Ad gene expression and progeny production

Read more

Summary

Introduction

DNA viruses require nuclear transport of their genomes to productively infect the host cell and initiate efficient replication. Introduction of viral nucleic acids into the host cell nucleus triggers danger signals, and activates DDR (DNA damage response) prior to cell cycle arrest, and apoptosis. Many viruses counteract these regulatory measures in infected cells in order to ensure productive infection, which necessitates proper viral gene expression and adequate progeny synthesis [1]. Our recent work showed that Ad DNA remains transcriptionally inactive until protein VI mediates activation of the viral E1A promoter by functionally inhibiting chromatin-associated transcription factor Daxx [2]. Ad E1A (early region 1A protein) is the first protein expressed after infection, playing an essential role in subsequent transcriptional activation, and induction of cell cycle progression [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call