Abstract
Pulmonary dysfunction is a widespread issue, particularly in developing nations. It encompasses restrictive, obstructive, and mixed pulmonary function disorders that lead to a decrease in vital lung capacity, an increase in functional residual capacity, and a decline in blood oxygen concentration and saturation. This study aims to combine oximetry and spirometry into a single device, using the Internet of Things (IoT) technology to display results via a smartphone app. The focus is on analyzing oxygen saturation, with normal levels ranging from 96% to 100% in adults, alongside a heart rate of 60-100 beats per minute. The MAX30102 sensor measures oxygen saturation, and the Arduino Pro Mini and D1 Mini ESP32 microcontrollers process data. The Android-based app, developed using Kodular platform, integrates a MySQL database and connects to the device module via Wi-Fi. Ten respondents underwent five measurements, revealing an average error of ±0.88% for oxygen saturation (SpO2) and ±2.82% for heart rate measurements. The average data loss rate during transmission was ±0.66% for SpO2 and ±0.89% for heart rate. These findings highlight existing errors in the module. The research aims to facilitate remote health monitoring for healthcare professionals, improving accessibility and healthcare provision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.