Abstract

Scanning probe microscopy was used to evaluate and compare the surface roughness, mechanical and tribological properties of hydrogenated (a-C:H) and tetrahedral (ta-C) diamond-like carbon (DLC) and amorphous carbon nitride (a-C:N) films. Compared to the a-C:H and a-C:N films, the ta-C films exhibit the lowest surface roughness. The soft surface layers of DLC and a-C:N films were revealed by nanowear tests and their thickness varies over the range of 0.2 to 4.1 nm. The nanoscale friction coefficient measurements from lateral force microscopy shows that these films have obviously different friction coefficients. The lower friction coefficients of ta-C and a-C:N films can be attributed to the existence of soft graphite-like surface structure. We proposed the deposition processes of DLC and a-C:N films, where their surface roughness, structure and mechanical properties were associated with the vapor plasma particle energy distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call