Abstract

The lowest-known excited state in nuclei is the 7.6 eV isomer of $^{229}\mathrm{Th}$. This energy is within the range of laser-based investigations that could allow accurate measurements of possible temporal variation of this energy splitting. This in turn could probe temporal variation of the fine-structure constant or other parameters in the nuclear Hamiltonian. We investigate the sensitivity of this transition energy to these quantities. We find that the two states are predicted to have identical deformations and thus the same Coulomb energies within the accuracy of the model (viz., within roughly 30 keV). We therefore find no enhanced sensitivity to variation of the fine-structure constant. In the case of the strong interaction the energy splitting is found to have a complicated dependence on several parameters of the interaction, which makes an accurate prediction of sensitivity to temporal changes of fundamental constants problematical. Neither the strong- nor Coulomb-interaction contributions to the energy splitting of this doublet can be constrained within an accuracy better than a few tens of keV, so that only upper limits can be set on the possible sensitivity to temporal variations of the fundamental constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.