Abstract
The regular distribution of micro-droplets splitting from thin ferrofluid layer is systematic experimentally investigated, as the layer is placed in a vertical magnetic field. In this work, the field is applied in an instant manner and a slow manner, respectively; the field strength is linear increased. With instantly raising the field, it is observed that the ferrofluid layer is split into several regularly distributed micro-droplets, and that the number of micro-droplets is linear to the magnetic field strength and the thickness of the liquid layers. When the field is slowly increased, a liquid ring together with several micro-droplets appears from the ferrofluid layer splitting. A spatial drift of the micro-droplets is also observed in the process of increasing the magnetic field. Our results are useful for manipulating the splitting regularities of ferrofluid layers by magnetic field, which may be used in non-contact segmentation, and magnetically manipulated drug carriers for targeting the therapy, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wuhan University of Technology-Mater. Sci. Ed.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.