Abstract

(Ge:SiO 2)/SiO 2 multilayers were fabricated for exploring the influence of the stress on the structure of Ge nanocrystals. When annealed at 800 °C, the multilayers show a clear splitting (fine structure) of the Ge (220) X-ray diffraction peak and have a preferred orientation. Similar effects cannot take place in the multilayers annealed at higher or lower temperature. Analyses of Raman scattering, X-ray diffraction spectroscopy, and transmission electron microscope observations suggest that the observed phenomena arise from compressive stress exerted on Ge nanocrystals, which is induced by the confinement of both the SiO 2 matrix in the cosputtered layer and neighboring SiO 2 layers. The stress may cause an orthorhombic distortion of the diamond structure of bulk Ge. This will lead to the disappearance of the (111) and (311) diffraction peaks and the splitting of the (220) peak. This kind of (Ge:SiO 2)/SiO 2 multilayers enables us to control the sizes of the Ge crystallites and enhance the stress, and is thus promising in forming new nanocrystal structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.